FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE
DEPARTMENT OF PURE AND APPLIED MATHEMATICS

MODULE \quad| ASMA2A1 |
| :--- |
| SEQUENCES, SERIES AND VECTOR CALCULUS |
| (Engineering Group) |

CAMPUS APK
EXAM \quad NOVEMBER 2015

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

CONTACT NUMBER \qquad
\qquad
NUMBER OF PAGES: $1+12$
INSTRUCTIONS: 1. ANSWER ALL QUESTIONS ON THE PAPER IN PEN
2. CALCULATORS ARE ALLOWED
3. INDICATE CLEARLY ANY ADDITIONAL WORKING OUT

Question 1

Find the limit of the given sequence if it exists:

$$
a_{n}=\frac{1 \cdot 4 \cdot 7 \cdots(3 n-2)}{2 \cdot 6 \cdot 10 \cdots(4 n-2)} \cdot \sqrt{n}
$$

Question 2

Determine whether the given statement is true or false, and motivate your answer clearly: If $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, then $\sum a_{n}$ is convergent.

Question 3

Test the following series for convergence or divergence:
(3.1) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n(n!)^{n}}{n^{3 n}}$
(3.2) $\sum_{n=1}^{\infty} \frac{\cos 2 n}{1+3^{n}}$
(3.3) $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / \sqrt{n}}}$

Prove the following: If $\sum a_{n}$ is absolutely convergent, then it is convergent.

Question 5
Find a Maclaurin series for the given function:

$$
f(x)=\left\{\begin{array}{cl}
\frac{1-\cos x}{x^{2}} & \text { if } x \neq 0 \\
\frac{1}{2} & \text { if } x=0
\end{array}\right.
$$

Find a Maclaurin series for f and determine its radius of convergence:

$$
f(x)=(1-3 x)^{-3}
$$

Question 6
Determine $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=\left\langle\frac{1}{1+t^{2}}, \cos ^{2} t, t e^{t^{2}}\right\rangle$ and $\mathbf{r}(0)=\langle 1,0,1\rangle$.

Question 7

Reparametrize the curve with respect to arc length measured from the point where $t=0$ in the direction of increasing t :

$$
\mathbf{r}(t)=\langle 2 \sin t, 4,2 \cos t\rangle .
$$

Question 8

State the definition of the curvature of a smooth curve C.

Question 9

Show that if there is a $c \in \mathbb{R}$ such that $|\mathbf{r}(t)|=c$ for all t, then $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$.

Prove that the curvature of a curve C with vector function $\mathbf{r}(t)$ is given by the following formula: [4]

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

Question 11

A particle moves with position function

$$
\mathbf{r}(t)=\left\langle t^{3}, 1-t^{2}, t+7\right\rangle .
$$

Determine the normal component of the accelaration of the particle.

