

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING: CIVIL

SUBJECT

: STRUCTURAL STEEL AND

TIMBER DESIGN III

CODE

: TSS31-1

DATE

: SUMMER SSA EXAMINATION 2015

8 DECEMBER 2015

DURATION

: (SESSION 2) 11:30 - 15:30

WEIGHT

: 40:60

TOTAL MARKS

: 114

EXAMINER

: MR C BRUWER

MODERATOR

: MR B. RAATH

NUMBER OF PAGES : 4 PAGES

INSTRUCTIONS

: THIS IS A PARTIAL OPEN BOOK TEST, THE

FOLLOWING IS ALLOWED:

• SANS 10162

• SANS 10160

STEEL TABLES

• 2 PAGES WITH STUDENT NOTES

REQUIREMENTS

: PROGRAMABLE POCKET CALCULATORS ALLOWED.

QUESTION 1

The figure below shows a beam A-E (406x178x67 I section Grade 350W) simply supported at A and E with a lateral support the compression flange at D. Beam A-E is carrying two beams at B and C, attached to the bottom flange, which impose the following loads:

- Nominal fixed point load at B: Permanent (Dead) = 55 kN
 Imposed (Live) = 45 kN
- Nominal fixed point load at C: Permanent (Dead)= 85 kN Imposed (Live) = 65 kN
- Include the beam's own weight Determine if the beam (both segments) is adequate to support the applied loads by checking the following:

CII	ceking the following.	
•	1.1 Determine the ultimate loads	(2)
•	1.2 Draw the ultimate shear force and bending moment diagrams	(3)
•	1.3 Determine the class of the beam	(6)
•	1.4 Bending for segment A-D	(6)
	o 1.4.1 Determine the moment of resistance	(9)
	o 1.4.2 Compare the ultimate moment to the moment of resistance	(1)
•	1.5 Bending for segment D-E	()
	 1.5.1 Determine the moment of resistance 	(5)
	o 1.5.2 Compare the ultimate moment to the moment of resistance	(1)
•	1.6 Shear	(1)
	 1.6.1 Determine shear resistance 	(6)
	 1.6.2.Compare the ultimate shear resistance to shear resistance 	(6)
	i shoul resistance to shear resistance	(1)
		[38]

QUESTION 2

The figure below show a truss with pin-jointed members subjected to the following point loads:

- Nominal point load at F: Permanent (Dead) = 40 kN Imposed (Live) = 35 kN
- Nominal point load at G: Permanent (Dead) = 50 kN Imposed (Live) = 55 kN
- Neglect the own weight of the structure.

Answer the following questions whilst determining if members BF and CF can resist the ultimate

• 2.1 Determine the ultimate forces in elements BF and CF	(0)
• 2.2 Check if the compression member (bolted on the one end and welded on the other)	(8)
adequate to resist the generated force by investigating the following:	. is
o 2.2.1 Slenderness limits	
o 2.2.2 Local buckling	(6)
2.2.3 Member buckling due to torsional-flexural buckling	(2)
o 2.2.4 Member buckling due to flexural buckling	(8)
2.2.5 Compare the minimum compared in	(2)
 2.2.5 Compare the minimum compression resistance force to the ultimate compression force and comment. 	
• 2.3 Check if the tension member (bolted on the one end and welded on the other) is adequate to resist the generated force by inner time and welded on the other)	(1)
is adequate to resist the generated force by investigating the following:	
 2.3.1 Slenderness limit 	
o 2.3.2 Yielding failure	(2)
Bolted side of the element	(1)
2.3.3 Bolt hole layout is given below at a time	
 2.3.3 Bolt hole layout is given below, check if it meets the minimum requirements 	
	(6)
and the shear, also effects for reduction of long lan enliged	(5)
 2.3.5 Bearing resistance of the member 2.3.6 Fracture failure 	(3)
2.3.7 Tension fracture and show for	(3)
-1017 Tonsion fracture and snear tracture	(4)
 2.3.8 Tension fracture and shear yielding Welded side of the element 	(4)
weided side of the element	(.)
o 2.3.9 Weld shear failure	(3)
 2.3.10 Fracture failure 	(5)
Compare minimum tensile resistance against ultimate tensile force.	(3)
2.3.11 Determine and name the minimum tensile resistance force and	
compare it to the diffimate tensile force and comment	(2)
ose the following information:	(2)
• All members are 100x100x15 Equal Angle, sawn to length, grade 350W steel	

- All members are 100x100x15 Equal Angle, sawn to length, grade 350W steel. r_0 =53.0mm, $C_w = 0.14x10^9 mm^6$ and Ω =0.63
- All bolts are 20mm fully threaded Class 8.8 bolts. One line of 5 bolts. End distance is 30mm, pitch is 55mm and edge distance is 30mm.
- All holes are drilled.
- Transverse weld (8mm E70XX) on the end and an 105mm long parallel welds on
- Connection plates are 350W steel and 16mm thick

QUESTION 3

Check if a 50x114mm timber member (3.5m long) which is part of a truss spanning 5m is adequate to resist an ultimate tensile force of 14kN by: 3.1 Checking the slenderness val

	3.1 Checking the stenderness value	
•	3.2 Determining the tensile resistance of the member	(2)
•	3.3 Compare the resistance force to the member	(8)

3.3 Compare the resistance force to the ultimate force (1)

Additional notes:

- The tensile force is parallel to the grain of the solid SA pine grade 07 wood
- The ultimate tensile force of 15kN in a member of a truss results from the following loads applied on the truss:
 - o Ultimate dead load = 2.1kN/m^2
 - Ultimate live load = 1.4kN/m²
 - Ultimate wind load = 4.5kN/m^2
- This member will carry its own weight, live loads and wind loads permanently
- The trusses will be spaced at 410mm apart
- The member will be bolted to the connecting members by means of 6x12mm bolts arranged in 2 lines and 3 rows.
- The member is not treated with a water-borne preservative or fire retardants
- The moisture content will exceed 20%