

PROGRAM

: NATIONAL DIPLOMA

METALLURGICAL ENGINEERING

SUBJECT

: MECHANICAL METALLURGY

CODE

: TMP 31-1

DATE

: SUMMER SSA EXAMINATION 2015

8 DECEMBER 2015

DURATION : (SESSION 3) 15:00 - 18:00

TIME

: 15:00 - 18:00

WEIGHT

: 40:60

TOTAL MARKS : 100

EXAMINER

: MR JW VAN DER MERWE

082003406

MODERATOR : MR JM PROZZI

5103

NUMBER OF PAGES : 4 PAGES

INSTRUCTIONS : CALCULATORS ARE PERMITTED

INSTRUCTIONS TO STUDENTS:

1. ANSWER ALL QUESTIONS. 2. MAKE ASSUMPTIONS WHERE NECESSARY AND JUSTIFY THEM CLEARLY. **QUESTION 1** 1.1. Describe the two kinds of stress and strain. (6)1.2. How can components fail? (6)[12] **QUESTION 2** 2.1. Show the Mohr circle of stress for the following condition: stress in the xdirection = 50 MPa; stress in the y-direction = -80 MPa and a shear stress of 35 MPa. (6) 2.2. Compare the two yielding criteria for ductile metals. (4) [10] **QUESTION 3** 3.1. Discuss the difference between slip in a perfect lattice and slip by dislocation movement. Why is it necessary to have dislocations? (6)3.2. Why would one rather use true strain than engineering strain? (4)[<u>10</u>] **QUESTION 4** 4.1. Name a sessile dislocations. (2)4.2. What is meant by the critical resolved shear stress? (4) [6] **QUESTION 5**

5.1. How do dislocations interact with precipitates? Show two ways.

(7)

5.2.	How would dislocations multiply?	(4)
	The state distributions multiply.	(4) [<u>11</u>]
QU.	ESTION 6	
6.1.	Show the elastic stresses at a notch for plane strain conditions.	(6)
6.2.	Explain microvoid coalescence.	(4)
		[10]
QUI	ESTION 7	
7.1.	Explain how to test for a valid fracture toughness value when using a notched bend specimen	(8)
7.2.	What can be done to determine if a pressure vessel is safe for operation when it contains a crack of known length?	(5)
		[<u>13</u>]
QUE	ESTION 8	
8.1.	What is the relationship between hardness and fatigue?	(4)
8.2.	Discuss the difference between striations and beach marks.	(6)
		[<u>10]</u>
QUE	STION 9	
9.1.Show the stress rupture curve and how it can be used to predict fatigue life.		(6)
9.2.Discuss two creep deformation mechanisms in short.		(4)
		[<u>10</u>]

QUESTION 10

10.1. Give two material-environment combinations that will cause SCC when stressed appropriately. (2)

10.2. Explain the Robertson crack arrest test. (6)

TOTAL: 100