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NMR Spectra, Single Crystal X-Ray Structures and Mass Spectrometry Data   

 

Figure S1: 1H NMR spectrum of the oxidized triazole isomer 2, 1-benzyl-4-hydroxymethyl-1H-1,2,3-triazole in CDCl3 recorded using a 400 MHz 

FTNMR spectrometer. 
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Figure S2: 1H NMR spectrum of the oxidized triazole isomer 3, 1-benzyl-4-carboxaldehyde-1H-1,2,3-triazole, in CDCl3 recorded using a 400 MHz 

FTNMR spectrometer. 
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Figure S3: 13C{1H} NMR spectrum of the oxidized triazole isomer 3, 1-benzyl-4-carboxaldehyde-1H-1,2,3-triazole, in CDCl3 
recorded using a 100 MHz FTNMR spectrometer 
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Figure S4: 1H NMR spectrum of stereoisomer 1 of conjugated 1-benzyl-4-phenyl-1H-1,2,3-triazolyl(p-cymene)ruthenium(II) chloride 5-membered 

metallacycle, 1a_I, in CDCl3 recorded using a 500 MHz FTNMR spectrometer.  
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Figure S5: 13C{1H} NMR spectrum of stereoisomer I of conjugated1-benzyl-4-phenyl-1H-1,2,3-triazolyl(p-cymene)ruthenium(II) chloride 5-

membered metallacycle, 1a_I, in CDCl3 recorded using a 125 MHz FTNMR spectrometer.  
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Figure S6: 1H NMR spectrum of stereoisomer II of conjugated 1-benzyl-4-phenyl-1H-1,2,3-triazolyl(p-cymene)ruthenium(II) chloride 5-

membered metallacycle, 1a_II, in CDCl3 recorded using a 500 MHz FTNMR spectrometer. 
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Figure S7: 13C{1H} NMR spectrum of stereoisomer II of conjugated 1-benzyl-4-phenyl-1H-1,2,3-triazolyl(p-cymene)ruthenium(II) chloride 5-

membered metallacycle, 1a_II, in CDCl3 recorded using a 125 MHz FTNMR spectrometer. 
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Figure S8: 1H NMR spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazolyl-(pentamethylcyclopentadienyl)rhodium(III) chloride complex 1b in CDCl3 

recorded using a 400 MHz FTNMR spectrometer. 
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Figure S9: 13C{1H} NMR spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazolyl-(pentamethylcyclopentadienyl)rhodium(III) chloride, complex 1b in 

CDCl3 recorded using a 100 MHz FTNMR spectrometer. 
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Figure S10: 1H-13C HMBC spectrum showing cross-peaks of protons (H) in through (two-to-four) bonds correlations with neighboring carbon 

atoms correlations in rhodium(III) cyclometalate 1b in CDCl3 recorded using a 500 MHz FTNMR spectrometer.  
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Figure S11: HRMS-ESI spectrum of conjugated 1-benzyl-4-methyloxy-1H-1,2,3-triazolyl(1,2,3,4,5-pentamethylcyclopentadienyl)rhodium(III) 

chloride complex, 2b. 

 

Table S1: Selected NOESY 1H-1H correlations in complex 1b and 1b-5’-GMP and 1H-13C HMBC for 1b 

Chemical Shift,  (ppm) 

H  

  

NOESY (1H-1H) HMBC (1H-13C) 

       1b 1b 1b-5'-GMP 

5.3 7.32, 7.52 7.32, 4.3(GMP) 117.0 (C-5), 128.6 (C-2''), 134.2 (C-1") 

6.96 7.13 7.13 134.7 (C-1'), 136.7 (C-6') 

7.13 6.96 6.96 121.7 (C-3'), 173.7 (C-2'(Rh)) 

7.32 5.3 H8 (Im), 5.3 128.1 (C-3"), 134.2(C-1") 

7.51 5.3 
 

117.0 (C-H, dd, 1JCH = Hz), 54.9  

7.73 1.66 Me (Cp*) 1.66 Me(Cp*) 122.7 (C-3'), 134.7 (C-1') 
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Figure S12: Colorimetric MTS assay results for the triazolyl conjugated complexes (1(a-d) and 2b) evaluated against MT4 (leukemia), HeLa 

(cervical), HEK293 (kidney adenocarcinoma) and A549 (lung cancer) cell lines at six two-fold dilutions (100 M, 50 M, 25 M, 12.5 M, 6.25 

M and 3.13 M). The data was collected in duplicate for three independent measurements and reported as mean ± SEM with n = 6, with the plus 

caps representing the standard error of mean bars. Auranofin was used as the positive control. 

 

Figure S13: Displacement thermal ellipsoids plot with 50 % probability of the dimeric units in the molecular structures of 1-benzyl-4-phenyl-1H-

1,2,3-triazolyl (a) (p-cymene)ruthenium(II) dichloride complex, 1a and (b) (pentamethylcyclopentadienyl)iridium(III) chloride, 1c.  
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Figure S14: Molecular packing in the crystal structure of 1-benzyl-4-phenyl-1H-1,2,3-triazolyl (p-cymene)ruthenium(II) dichloride complex, 1a.  

 

Figure S15: Displacement thermal ellipsoids plot with 50 % probability of the dimeric units in the molecular structures of 1-benzyl-4-phenyl-1H-

1,2,3-triazolyl (pentamethylcyclopentadienyl)rhodium(III) chloride, 1b, which co-crystallized with chloroform.  
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Figure S16: 1H NMR spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazolyl-(pentamethylcyclopentadienyl)iridium(III) chloride complex 1c in CDCl3 

recorded using a 400 MHz FTNMR spectrometer. 
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Figure S17: HRMS-ESI spectrum for cyclometallated 1-benzyl-4-phenyl-1H-1,2,3-triazolyl (pentamethylcyclopentadienyl)(DMSO)iridium(III) 

chloride cationic complex, 1c-dmso, obtained by incubation of iridacycle 1c in dimethyl sulfoxide and water solvent system at 313 K. 
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Figure S18: 1H NMR spectrum of conjugated 1-benzyl-4-phenyl-1H-1,2,3-triazolyl (p-cymene)osmium(II) chloride 5-membered metallacycle, 1d, 

in DMSO-d6 recorded using a 400 MHz FTNMR spectrometer. 
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Figure S19: Time dependent 1H NMR spectra showing the formation of aquated complex of 1a in the presence of triethyl amine ( ) recorded in 

DMSO-d6 in D2O using a 400 MHz FTNMR spectrometer. At t = 0.1 h, the neutral chloride complex 1a (lower spectrum) is the predominant 

species; after 2 h of incubation of complex 1a in aqueous conditions, the cationic aquated complex 1a ( ) is almost in equilibrium with the neutral 

complex 1a while the cationic aquated complex 1a is the predominant species after t = 12 h. There was no detectable deprotonation of the triazolyl 

proton H-5 in both the neutral complex 1a and the cationic aquated complex of 1a.  
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Figure S20: 31P{1H} NMR (202 MHz, DMSO-d6) showing an upfield shift (Δ = -1.41 ppm) in the phosphorous peak of DNA model guanosine 

5’-GMP upon incubation with complex 1c at 313 K for 24 h in the process of carbenylation. (a) 31P{1H} NMR (202 MHz, DMSO-d6) of free DNA 

model guanosine 5’-GMP (b) 31P{1H} NMR (202 MHz, DMSO-d6) of 1c-5’-GMP complex upon after 24 h of incubation at 313 K.  

 

 

(b)  1c_gmp_t = 24 h  at 313 K

(a) gmp_t = 24 h  at 313 K)
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Figure S21: 1H NMR (500 MHz, DMSO-d6) of DNA model guanosine 5’-GMP upon incubation with complex 1c at 313 K for 24 h.  
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Incubation of complex 1c with 2-methylimidazole  

In a typical experiment, an aqueous solution (0.2 mL) of 2-methylimidazole (0.45 mg, 1.0 equiv) was added in one portion to an incubating 

aqueous solution of aquated complex 1c (3 mg, 5.0 x 10-3 mmol, 1.0 equiv) in 50 % DMSO-d6 in mQH2O at 313 K. Subsequently, the 1H 

NMR spectrum of the complex solution was recorded immediately, then at intervals of 12 h for a period of 120 h. Figure S22 (ESI) shows 

selected 1H NMR spectra of the complex mixture after 2 h, 24 h and 48 h as supportive evidence of the formation of k1N-1c-2MeIm complex 

isomeric mixture (*). There was no significant difference between the spectra recorded after 2 h and that of 12 h as well as between 48 h 

and 120 h of incubation.    

Scheme S1: Incubation of complex 1c and 2-methylimidazole mixture forms k1N-1c-2MeIm complex    

 

 

Figure S22: 1H NMR spectra (400MHz, DMSO-d6) upon incubation of complex 1c with 2-methylimidazole for 48 h at 313 K; showing the 

emergence and growth of k1N-1c-2MeIm coordination complex of 1c (*) recorded after 2 h, 24 h and 48 h of incubation.    
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pKa determination. A plot of pH versus the resonance shift of the methylene protons was obtained by incubation of the mixture for about 

12 h at 313 K (Figure S23). 

 
Figure S23: Scatter plot of pH versus resonance shift, , of te CH2 in triethyl amine obtained over duration of 12 h following deprotonation 

of triazole proton H-5 in complex 1c upon incubation at 313 K for 12 h with pH curve fitted using Boltzmann fitting model (R2 = 0.9974; 

pKa of triazole H-5 of 1c is ca. 9.4 from the inflection point of the curve). 

 

Figure S24: Time dependent 1H NMR of complex 1c showing the conversion of the chloride complex 1c (major compound at t = 5 mins; 
H = 8.43 ppm) to the aquated complex 1c (major compound at t = 45 mins; H = 8.43 ppm, shown by arrows). The spectrum was recorded 
in dmso-d6 using 400 MHz FTNMR. The spectrum recorded at t = 5 mins shows the emergence of a new set of signals corresponding to 
aquated complex 1c (shown by arrows) each downfield with respective to that chloride complex 1c.    
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Behavior of complex 1a and 1c in aqueous environment in the presence of amino acids: Interaction of these complexes with amino 

acids, L-cysteine, L-Proline, DL-proline and L-histidine were evaluated for an extended duration of 168 h – 240 h at incubation temperature 

of 313 K.  Figure S25 shows an overlay of the 1H NMR spectra of the aquated complex 1c, 1c+proline and 1c+cysteine. Figure S26 and 

S27 show 1H NMR spectra of complex 1c and 1a respectively with histidine as one of the representative amino acids containing potentially 

coordinating imidazole moiety.    

 

Figure S25: Comparison of time dependent 1H NMR (500MHz, DMSO-d6) of aquated complex 1c, L-proline and L-cysteine amino acid 
molecules upon incubation for a period of 24 h at 313 K. The spectra show good similarity for complex 1c signals between the aquated 
complex 1c and that of 1c-proline or 1c-cysteine suggesting absence of bonded interactions between complex 1c and these amino acids.   

Interaction with histidine: Inspired by the formation of a coordination adduct on reacting with imidazole to form k1N-imidazolyl complex. 

Interaction of complex 1a and 1c with histidine occurred with varying degrees in a time-dependent manner upon incubation of the mixture 

at 313 K for an extended period of 240 h. For complex 1c, small amount of covalently bonded 1c-histidine adduct (ca. 9 %) through N1 or 

N3 was only observed after 192 h (Figure S26); with less than 2 % of the adduct observed after 96 h. In contrast, complex 1a was observed 

to significantly interact with L-histidine to form k1N-1a-histidine adduct within the first 96 h (Figure S27), suggesting the possibility of 

complex 1a to readily interact with biomolecules such as serum proteins to a good extent under physiological conditions.   
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Figure S26: 1H NMR spectrum (400 MHz, DMSO-d6) of a mixture of complex 1c and L-histidine amino acid recorded after 192 h showing 
traces (< 10 % w.r.t 1c) of coordination complex k1N-1c-histidine (*). There was less than 2 % of the adduct observed after 96 h of incubation 
of the mixture at 313 K.   
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Figure S27: 1H NMR spectrum (400 MHz, DMSO-d6) of a mixture of complex 1a and L-histidine amino acid recorded after 96 h upon 

incubation at 313 K, showing significant amount (> 30 %) of coordination adduct k1N-1a-histidine evidenced by the emergence of a 

second set of peaks (●). 
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Scrambling Experiments: competitive experiments between amino acid and DNA model guanosine biomolecules: reveals selectivity 

to DNA model guanosine over amino acids within the experimental time of 24 h.  

Scheme S2: Scrambling experiments of 1c involving proline and 5’-GMP  

 

 

Figure S28: 1H NMR spectrum (500 MHz, DMSO-d6) of the reaction mixture of cyclometallated 1c (▲), L-proline (♦) and 5’-GMP (*) recorded 

after 24 hours of incubation at 310 K. Notably, the triazole proton H-5 ( 8.56 ppm; circled in red) in (a) of the aquated complex 1c disappeared 

after 24 
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Figure S29: Time dependent 1H NMR showing the interaction of triethyl amine base with aquated complex 1c-H2O leading to deprotonation of 
the triazole H-5 proton evidenced by the decreasing intensity of (or rather area under) the triazole proton H-5 signal and the downfield shift of 
methylene protons (Δ = + 0.39 ppm; red circle: from H 2.41 ppm  H 2.80 ppm) of triethyl amine corresponding to protonated triethyl amine. 
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1D NOESY experiments: Transient NOEs for 1a_I and 1a_II on selective irradiation of H 7.52 ppm (i.e. triazole proton H-5) are shown 

in Figure S7 using a mixing time, d8 = 0.3s. Build up experiments at different mixing times (d8 = 0.01s -1s) and 2D-NOESY were used to 

establish appropriate NOEs from artifacts. The % NOE was estimated by calculating percent integral ratio of the NOE peak to that of the 

saturation peak.   

 

Figure S30: 1H NMR spectra (500MHz, CDCl3) of stereoisomers of 1a showing distinct nuclear Overhauser effects on metallated phenyl protons 
upon irradiation of the methyl region of the isopropyl group (p-cymene); isomer 1a_I (upper spectrum) with no NOE on H-6’ and 1a_II (lower 
spectrum) exhibit +0.2 % NOE on H-6’. Insert: A section ( 5.2 – 5.8 ppm) of the full spectrum for each of the isomers.   

 

BEHAVIOR OF THE COMPLEX OF 1c IN THE PRESENCE OF BSA: UV-VIS SPECTROPHOTOMETRY  

UV-Vis Spectroscopic BSA-1c titration. Treatment of 1% DMSO-PBS solution of BSA with various concentrations (2.5 M, 5 M, 7.5 

M, 8 M, 9 M, 10 M and 12.5 M) of 1% DMSO-PBS solution of complex 1c gave the absorption curves shown in Figure 1b. The 

absorption intensity of BSA-1c complex increased with increasing concentration of complex 1c. The absorption peaks at  = 239.50 nm 

and  = 278.50 nm are ascribed to the peptide and the aromatic ring of the aromatic amino acids, respectively.1             
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Figure S31: UV-Vis absorption curves of (a) 10 M BSA only (b) BSA titration curves with 1c: (i) BSA only (2 M) and BSA with (ii) 5 
L (iii) 10 L (iv) 15 L (v) 16 L (vi) 18 L, (vii) 20 L and (viii) 25 L of 2 mM stock 1 % DMSO-PBS (pH 7.4) solution of complex 
1c. 1% DMSO-PBS solution was used as the reference solution. Inset: An overlay of BSA only (green; 10 M BSA) and BSA (2uM) + 1c 
(10 M) spectra. (c) Relative conversion of complex 1c (■) to the cationic aquated complex (*), 1c(OH2)Cl. (d) Rate of hydrolysis of the 
chloride complex 1c to form the aquated complex; rate constant, khyd =1.8293 min-1 or 109.758 h-1 based on time-dependent consumption 
of complex 1c. (e) Variations in concentration of triazole proton H-5, [Ta-H5], with time for complexes 1b (blue) and 1c (red) in 
carbenylation, monitored using 1H NMR spectroscopy. (f) Rate of deprotonation, kt, of triazole proton H-5 with time; rate constant, kd = 8.0 
x 10-4 s-1 or 2.88 h-1 for complex 1c. 

From UV-Vis spectrophotometric studies, compound 1c shows possibly weak or no interaction with bovine serum albumin (BSA) as a 

model protein following the insignificant changes in the absorption wavelengths of the peptide ( = 239.5 nm) and the aromatic moieties of 

the protein ( = 278.5 nm) (Figure 1a and 1b).  
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Figure S32: HRMS-ESI(-ve) spectrum for cyclometallated 1-benzyl-4-phenyl-1H-1,2,3-triazolyl (pentamethylcyclopentadienyl)rhoddium(III) 
chloride complex 1b showing a peak at m/z 542.0665 corresponding to C25H27RhClN3 [M+Cl]-, (calcd m/z 542.0637). 

 

Figure S33: HRMS-ESI(+ve) spectrum for cyclometallated 1-benzyl-4-phenyl-1H-1,2,3-triazolyl (pentamethylcyclopentadienyl)rhoddium(III) 
chloride complex 1b showing a base peak at m/z 472.1261 corresponding to C25H27RhN3 [M-Cl]+, (calcd m/z 472.1260).   
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Figure S34: HRMS-ESI(+ve) spectrum for cyclometallated 1-benzyl-4-phenyl-1H-1,2,3-triazolyl (pentamethylcyclopentadienyl)iridium(III) 

chloride complex 1c showing a base peak at m/z 562.1834 corresponding to C25H27IrN3 [M-Cl]+, (calcd m/z 562.1834).  

 

Figure S35: HRMS-ESI(+ve) spectrum for cyclometallated 1-benzyl-4-phenyl-1H-1,2,3-triazolyl(p-cymene)osmium(II) chloride complex 1d 
showing a base peak at m/z 560.1737 corresponding to C25H28N3Os [M-Cl]+, (calcd m/z 560.1868). 
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