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QUESTION 1 [9] 

1.1 Provide a short definition of the bootstrap  (2) 

1.2 Explain the difference between the concepts of the “ideal bootstrap estimator” and the “approximate 

bootstrap estimator”. (2) 

1.3 Consider using the EDF, 𝐹𝑛, as an estimator for 𝐹. The EDF is defined as: 

𝐹𝑛(𝑥) =
1

𝑛
∑ 𝐼(𝑋𝑖 ≤ 𝑥),   where 

𝑛

𝑖=1

𝐼(⋅) is the indicator function. 

1.3.1 Explain how one would go about drawing bootstrap samples from the EDF. (1) 

1.3.2 If it is known that the EDF is an unbiased estimator for 𝐹(𝑥), show that the variance of the EDF, 

𝐹𝑛 is equal to 
1

𝑛
𝐹(𝑥)(1 − 𝐹(𝑥)). (2) 

1.4 Prove that the ideal Bootstrap estimate of the expected value of the statistic 𝜃𝑛 = 𝑋̅𝑛 is given by 𝑋̅𝑛. 

  (2) 

QUESTION 2 [10] 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from an unknown distribution 𝐹 with parameter 𝜃 = 𝑡(𝐹). Let 𝜃𝑛 =

𝑡(𝐹𝑛) be the plug-in estimate of 𝜃.  

2.1 Suppose one wants to use the bootstrap to estimate the following quantity  

𝛿 = 𝑉𝑎𝑟 (𝜃3 − 𝐸(𝜃)
3

)
𝜃

 

By only making use of the plug-in principle, state the ideal bootstrap estimate of 𝛿 (using “bootstrap” 

notation). Call this  𝛿          (2) 

2.2 By only making use of the plug-in principle, state the ideal bootstrap estimate of Var(𝛿) (using 

“bootstrap”     notation). (3) 

2.3 Provide an algorithm that can be used to approximate the estimate given in 2.2.                  (5) 

QUESTION 3 [8] 

3.1 A sample of data 𝑋1, 𝑋2, … , 𝑋𝑛 is collected from some population. Suppose that the population has the 

property that [𝐸(𝑋)]2 = 𝑉𝑎𝑟(𝑋) = 1. Describe, in detail, the procedure you would use to obtain 

bootstrap samples 𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗ . (Only state the method used to obtain the bootstrap samples). (2) 

3.2 A sample of data 𝑌1, 𝑌2, … , 𝑌𝑛 is collected from a different population. Suppose that it is known that this 

population is normally distributed. Describe, in detail, the procedure you would use to obtain bootstrap 

samples 𝑌1
∗, 𝑌2

∗, … , 𝑌𝑛
∗. (Only state the method used to obtain the bootstrap samples). (2) 

3.3 Consider the smoothed Bootstrap sample 𝑌𝑖
∗ = 𝑋𝑖

∗ + ℎ𝑍𝑖 , 𝑖 = 1,2, … , 𝑛 where 𝑋𝑖
∗ are i.i.d. from the EDF, 

𝐹𝑛, and 𝑍𝑖  are i.i.d. from some symmetric distribution function 𝐾(𝑥) and 𝑉𝑎𝑟(𝑍𝑖) = 1 and 𝐸(𝑍𝑖) = 0. 

Moreover, assume that {𝑋𝑖
∗} and {𝑍𝑖} are independent. Prove that creating the sample 𝑌𝑖

∗ = 𝑋𝑖
∗ + ℎ𝑍𝑖  

is the same as sampling from the smoothed kernel distribution function  (4) 
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  𝐹ℎ(𝑥) =
1

𝑛
∑ 𝐾 (

𝑥 − 𝑋𝑖

ℎ
) .

𝑛

𝑖=1

 

   

QUESTION 4 [10] 

Assume that 𝐺 denotes the distribution function of the statistic 𝜃𝑛 = 𝜃𝑛(𝑋1, 𝑋2, … , 𝑋𝑛), where 𝑋1, 𝑋2, … , 𝑋𝑛 

is a random sample from an unknown distribution 𝐹 with parameter 𝜃. 

 

4.1 The 100(1 − 𝛼)% bootstrap-𝑡 interval is given by  

[𝜃𝑛 − 𝐻̂−1 (1 −
𝛼

2
) 𝜎̂𝑛 ;  𝜃𝑛 − 𝐻̂−1 (

𝛼

2
) 𝜎̂𝑛 ], 

where 𝐻̂(𝑥) is the plug-in estimate of 𝐻(𝑥) = 𝑃 (
𝜃̂𝑛−𝜃

𝜎̂𝑛
≤ 𝑥), and 𝜎̂𝑛

2 is the bootstrap estimator for 

𝑉𝑎𝑟(𝜃𝑛). Provide an algorithm that you would use to approximate this bootstrap interval. (5) 

4.2 Suppose we are interested in a 100(1 − 𝛼)% confidence lower bound for 𝜃, i.e., the interval [ 𝐶 ; ∞) 

such that 𝜃 is contained in this interval with probability 1 − 𝛼. Derive an expression for 𝐶 by making use 

of the same procedures used to obtain the “Hybrid” percentile bootstrap confidence interval for 𝜃. (5) 

QUESTION 5 [10] 

Suppose we have a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 from an unknown distribution 𝐹 and we want to estimate 

the 3rd “raw” moment 𝜇3 = 𝐸(𝑋3) with the statistic 𝜇̂3 =
1

𝑛
∑ 𝑋𝑖

3𝑛
𝑖=1 .  

 

5.1 Provide the ideal bootstrap estimate of the bias of this statistic (only provide the “bootstrap” expression 

for this estimator; do not provide an algorithm). (1) 

5.2 It is possible that 𝜇̂3 is a biased estimator for 𝜇3. Explain how the estimator might be improved through 

the use of “bias correction”. Motivate your answer. (2) 

5.3 Provide a basic algorithm to approximate the bootstrap estimate of bias of 𝜇̂3. (4) 

5.4 How can this algorithm be improved? Define all quantities used in this improved algorithm carefully 

using the scenario provided. (3)  

QUESTION 6 [13] 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from an unknown distribution 𝐹 with finite mean 𝜇1 = 𝐸(𝑋), finite 

second “raw” moment 𝜇2 = 𝐸(𝑋2), finite variance 𝜎2 and median 𝜂.  

6.1 Consider testing the hypothesis  

𝐻0: 𝜎2 = 100  vs   𝐻𝐴: 𝜎2 > 100, 

where 𝜎0
2 is a constant. Explain in detail how you will approximate the bootstrap 𝑝-value to test this 

hypothesis using an algorithm. State the decision rule you would use to reject (or not reject) 𝐻0. (6) 
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6.2 Consider testing the hypothesis  

𝐻0: 𝜂 = 𝜂0  vs   𝐻𝐴: 𝜂 < 𝜂0, 

where 𝜂0 is a constant. Describe how you will transform 𝑋1, 𝑋2, … , 𝑋𝑛 to construct a sample (a “bootstrap 

population”) that satisfies the null hypothesis.         (2) 

 

6.3 Consider testing the hypothesis    

𝐻0: 𝜇3 = 0  vs   𝐻𝐴: 𝜇3 > 0, 

where 𝜇3 = 𝐸(𝑋3) is the 3rd “raw” moment. Instead of transforming the data in order to “mimic” the 

null hypothesis, one can change the probability associated with each data value in order to mimic the 

null hypothesis. That is, we can find the modified EDF (denoted 𝐹𝑇𝑖𝑙𝑡) that assigns probability 𝑝𝑖  to 𝑋𝑖, 

𝑖 = 1,2, … , 𝑛. 

Find an expression, by solving an appropriate minimization problem, for the probabilities 𝑝𝑖  , 𝑖 = 1, … , 𝑛. 

(Provide the expression for 𝑝𝑖 , 𝑖 = 1, … , 𝑛 that can be obtained as far as possible without having to resort 

to numerical optimisation procedures).  (5) 

QUESTION 7 [12] 

Assume that we have the following statistical relationship between the i.i.d. random variable 𝒀 =

(𝑌1, 𝑌2, … , 𝑌𝑛) with unknown distribution 𝐹 (dependent on unknown parameters 𝛽0,𝛽1, 𝛽2 and 𝛽3), the fixed 

dependent variable 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑛) and the i.i.d. random errors 𝜺 = (𝜀1, 𝜀2, … , 𝜀𝑛), with unknown 

distribution 𝐺 (independent of the parameters 𝛽0,𝛽1, 𝛽2 and 𝛽3 and 𝐸(𝜀𝑖) = 0, 𝑖 = 1,2, … , 𝑛): 

𝑌𝑖 = (𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝜀𝑖)𝛽3 

Given sample data 𝑌1, … , 𝑌𝑛 we can estimate 𝛽0, 𝛽1, 𝛽2 and 𝛽3 with 𝛽̂0, 𝛽̂1,  𝛽̂2 and 𝛽̂3.  

7.1  Provide a bootstrap algorithm that could be used to approximate the bootstrap estimate of standard 

error of 𝛽̂3. (4) 

7.2 How will your answer in 9.1 change if there are heteroskedasticity present in the model? Define all 

expressions used in your explanation carefully (state the desired distributional properties associated 

with the random variables methods that are introduced when applying this method). (3) 

7.3 How will your method of resampling change in Question 9.1 if we did not explicitly assume that the 

model 𝑌𝑖 = (𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝜀𝑖)𝛽3 generated the data? (2) 

Suppose now we are interested in using the bootstrap to test the hypothesis  
𝐻0: 𝛽3 = 1   𝑣𝑠.    𝐻𝐴: 𝛽3 > 1 

using some test statistic, say, 𝑇𝑛 = 𝑇𝑛(𝒀, 𝑿). 

7.4 Provide the bootstrap algorithm you would use to test this hypothesis (specifically explain how you 

would go about drawing your bootstrap samples for this test – to answer this question, you may simply 

indicate how the algorithm given in 9.1 changes).  (3) 
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QUESTION 8 [3] 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a sample drawn from an unknown population. Assume that the sample values are 

unique. Denote by 𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗  a bootstrap sample drawn with replacement from the original sample. 

Calculate 𝑃∗(𝑋𝑘
∗ ≤ 𝑋𝑘+1

∗ ) for some 𝑘 = 1, … , 𝑛 − 1. (3) 

 

 

TOTAL: 75 

 


